大学院前期(修士)課程(物理学専攻・宇宙地球科学専攻)入試問題

物理学B

(平成14年8月)

B1 から B6 までの 6 問の中から 3 問を選択し解答せよ。ただし理論の志願者は B1、B2、B3 から 2 問以上選択することが必要である。解答用紙の問題番号の欄に選択した問題の番号を書くこと。

B1

(1) 原子番号 Z の原子が電離し、一個だけ電子が残った状態を考える。この電子は核によるクーロン力で束縛されている。この電子に対するシュレディンガー方程式を球座標 (r,θ,ϕ) で書き下した時、その解 φ が球面調和関数 $Y_{\ell m}(\theta,\phi)$ を用いて

$$\varphi = R(r) Y_{\ell,m}(\theta, \phi) = \frac{\chi(r)}{r} Y_{\ell,m}(\theta, \phi)$$

と書けると仮定し、以下の問に答えよ。

(1-1) 関数 $\chi(r)$ に対する微分方程式を導出せよ。その際、以下の関係式を利用せよ。ただし、第二の関係は演算子の r 依存の部分を示す。

$$\nabla^2 Y_{\ell,m}(\theta,\phi) = -\frac{\ell(\ell+1)}{r^2} Y_{\ell,m}(\theta,\phi), (\nabla^2)_r = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r}$$

- (1-2) $\ell=0$ と 1 の場合の波動関数 $\chi(r)$ に対する実効的ポテンシャルのおおよその形を図示せよ。また、同じ負の値のエネルギーの固有状態があるとして、それぞれの $\chi(r)$ のおおよその形を描け。さらに、どちらの場合が電子の分布関数がより広がっているか述べよ。
- (1-3) いま、K 殼(主量子数 n=1 状態)に 2 個の電子があり、L 殼(主量子数 n=2 状態)に 1 個の電子が残されたイオンを考える。この場合、L 殻電子の固有エネルギーは 2s ($\ell=0$ 状態)と 2p ($\ell=1$ 状態)とで異なる。K 殼にある 2 個の電子による電荷遮蔽(しゃへい)の効果により、2s と 2p の固有エネルギーはどちらが高くなるか理由を述べながら説明せよ。
- (2) 電子のスピン軌道相互作用のハミルトニアンは

$$H' = \zeta(\boldsymbol{l} \cdot \boldsymbol{s})$$

と書ける。ここで、s はスピン角運動量、l は軌道角運動量、 ζ は比例係数である。この相互作用によって 2p 状態はさらに分離する。2p のエネルギー準位は何個に分離し、それぞれの分離した状態には何個の固有状態が縮退しているか求めよ。また、 ζ が定数であると考え、この相互作用を考慮しなかった時のエネルギーからの変化量をそれぞれの状態について求めよ。

- ${f B2}$ 面積 S の平面内で自由運動する N 個の電子からなる 2 次元系を考える。以下の問に答えよ。
- (1) 十分高温での電子1 個あたりの定積比熱 c_v はいくらか。
- (2) この電子系の状態密度 D(E)=dN/dE は定数 D_0 に等しいという。 D_0 を電子の質量 m などで表せ。ただし E は電子 1 個あたりのエネルギーである。また Fermi 波数 $k_{\rm F}$ を面密度 n=N/S などで表せ。
- (3) 一般の温度 T で化学ポテンシャル μ を定める条件を示せ。また低温で μ は T に殆ど依存しないことを示せ。必要なら公式

$$\frac{1}{1+e^x} = -\frac{d}{dx}\log(1+e^{-x})$$

を用いても良い。

(4) 十分低温での電子1 個あたりの定積比熱 c_v の温度依存性を求めよ。必要なら

$$\int_0^\infty dx \frac{x^2}{\cosh^2 x} = \frac{\pi^2}{6}$$

を用いても良い。また温度全域での c_n を図示せよ。

- (5) 次に磁束密度 B を加える。このとき電子の磁場によるエネルギー変化 ΔE はいくらか。ただし、スピン角運動量の磁場方向の成分を $\hbar s_3$ とし Bohr 磁子を β (MKSA 単位系では $|e|\hbar/2m$ 、cgs 単位系では $|e|\hbar/2mc$) とせよ。
- (6) 磁束密度 B のもとで、電子 1 個当りのスピンによる磁気モーメントの期待値 p を絶対零度 のときについて求めよ。

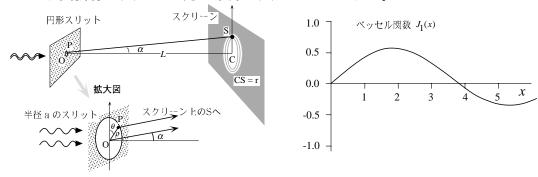
(1) ベッセル関数を定義するのに、積分表示を用いると便利なことがある:

$$J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$$

(1-1) 次の漸化式と微分関係式を示せ。

$$J_{n+1}(x) + J_{n-1}(x) = \frac{2n}{x} J_n(x), \quad J_{n+1}(x) - J_{n-1}(x) = -2\frac{d}{dx} J_n(x), \quad \frac{d}{dx} (x^n J_n(x)) = x^n J_{n-1}(x)$$

- (1-2) 1 次のベッセル関数について、x が小さいとき $J_1(x) \sim kx$ と近似できることを示し、また係数 k を求めよ。
- (2) ベッセル関数の応用として、光が円形スリットを通過してできるフラウンホーファー回折を考えよう。波長 λ の光が(平面波とする)下図のような半径 a の円形スリットに垂直に入射すると、その先 L の距離におかれた、スリット面に平行なスクリーン上に回折像が映る。スリットの中心を O、スクリーンの中心を C(OC はスリット、スクリーン両面に垂直)とし、また、L は a や回折像の大きさに比べ十分に大きいものとする。



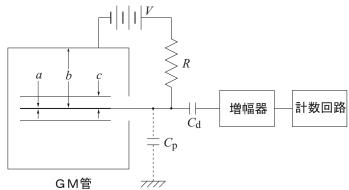
(2-1) ホイヘンスの原理によれば、スクリーン上の点 S (CS=r とする)では、スリット面の各点 P から生じた光が互いに干渉すると考えられる。図の OS, PS の行路差を d とすれば、位相差は $2\pi d/\lambda$ である。これらのことから、S における光の振幅は

$$f(r) = \int_0^a \rho \, d\rho \int_0^{2\pi} d\theta \cos(b\rho \sin \theta), \quad b = \frac{2\pi}{\lambda} \sin \alpha \sim \frac{2\pi r}{L\lambda}$$

に比例することを示せ。ここに、 α はスリットから S に向かう角度である(図参照)

- (2-2) $f(r)=2\pi\int_0^a J_0(b
 ho)
 ho d
 ho$ を示し、(1-1) の関係式を使ってこの積分を行え。
- (2-3) $J_1(x)$ のグラフを参考にして、スクリーン上における光の強度を原点 $\mathbb C$ からの距離 r の関数としてそのおよその形をかけ。
- (2-4) スリットの半径を a=0.1 mm、スクリーンまでの距離を L=2 m とする。波長が $\lambda=6\times 10^{-7}$ m の光の場合、もっとも内側に現れる暗い円の半径を計算せよ。

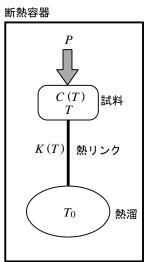
- ${f B4}$ 放電管の一種で放射線検出に利用されるガイガー計数管 (GM管)につき以下の問いに答えよ。
- (1) 下図に示すG M 管は同心円筒で、半径 a の芯線が陽極を、半径 b の外円筒が陰極面を構成し、管内には 1 0 0 分の 1 気圧程度のガスが封じ込まれている。陽極と陰極間には高電圧 V が印加されている。陽極中心から距離 r における電場を求めよ。なおガスの誘電率は無視してよい。



- (2) β 線が G M管に入るとその通路に沿い管内のガスを電離し電子と正イオンを生成する。この電子と正イオンはそれぞれ陽極及び陰極に向い加速され再びガスを電離する。こうして生成された電子は陽極線付近の強い電場のため加速され頻繁に電離を起し多量の電子と正イオンを生成するなだれ現象を起す。この現象に伴い中心電極に沿って放電が起る。その結果生成される正イオンは陽極芯線に沿い筒状に一様に分布し、なだれ現象はこの正イオンのために止む。その理由を陽極付近の電場の形を、電子なだれが無い場合の電場と比較しつつ定性的に図示し説明せよ。なお放電で生成された正イオンは半径 c の所に無視できる厚さで筒状に分布しているとみなせ。
- (3) β 線の強度は上記放電により生成された正イオンの陰極に向かう移動を電圧パルスとして回路で取りだし計数してわかる。しかし GM 管は正イオンが陰極に到達するまでは次の β 線が入射してきても応答しない時間を持つ。この時間を不感時間と呼ぶ。今不感時間 τ を持つ GM 管で計測された β 線の計数率が m である時、この β 線の真の計数率は幾らかを求めよ。なお $\tau < 1/m$ とする。
- (4) GM 管は宇宙線に対してもパルスを生じ、それらは β 線の計測の際にバックグランドとなる。今 β 線を同一時間計測したところ、線源がある時 200 カウントで無い時が 100 カウントであった。この際、 β 線源の強度は幾らの統計精度で求まるかを計算せよ。なお、不感時間の影響は考えなくてよい。また GM 管で測定される β 線及び宇宙線の計数はポアッソン分布に従うものとする。
- (5) 図のG M管計数回路において抵抗 R、コンデンサー $C_{
 m d}$ 及び $C_{
 m p}$ はそれぞれ大切な役目を持っている。ここで $C_{
 m p}$ は浮遊容量と呼ばれ検出器自体の静電容量と増幅器系入力部分の静電容量等の和で与えられる。コンデンサー $C_{
 m d}$ の役割について述べなさい。この回路で入力時定数 $RC_{
 m p}$ を正イオンが陰極に到達する所要時間(1ミリ秒とする)より長くしたい。 $C_{
 m p}$ が 10 pF(ピコファラッド)の時 R は幾らにすればよいか計算せよ。

B5 物質の比熱を温度の関数として測定する実験法として、緩和法と呼ばれる方法がある。 この方法について述べた以下の説明の中の問に答えよ。

下図に模式的に示したように、熱容量 C(T) (T は温度)の試料と熱溜(金属ブロック)が熱リンク(細い金属抵抗線)で熱的に弱く結合した系が、断熱容器の中に置かれ、試料と熱溜には、それぞれ温度計とヒーターが取り付けられており、熱溜の温度は、任意の温度で一定に保つことが出来る。



- (1) 物質の比熱、物体の熱容量、物体のもつ内部エネルギー、の違い(または、それらの間の関係)を簡潔に説明せよ。
- (2) 図で、まず、熱溜の温度を T_0 で一定に保つ。試料にパワー(単位時間あたりの熱入力)を加えない状態を十分長い時間保ち、系全体の温度が T_0 で均一になった後、時刻 t=0 から一定値のパワー P を連続的に入力する。このパワーは試料の温度の上昇(即ち試料の持つ内部エネルギーの増加)と、リンクを通っての熱溜への流出とに消費される。この熱流のバランスを表現する、温度 T と t に関する微分方程式を求めよ。ただし、試料の温度 t と熱溜の温度の差は小さく、熱リンク全体の熱コンダクタンスは t と書けるとする。また、試料内部での熱の拡散は熱リンクの熱伝導に比べて十分に早く、熱リンクの金属線は細くて、その熱容量は無視できるとする。
- (3) $T-T_0\equiv \Delta T$ が十分小さいなら、C(T)、K(T) をそれぞれ $C(T_0)$ 、 $K(T_0)$ で置き換えてよい。このとき ΔT の満たす微分方程式を導き、その解を求めよ。
- (4) 試料の温度変化がある程度ゆるやかになった後、 $t=t_0$ で入力を切ったとする。その後の試料の温度変化を求めよ。
- (5) これらの結果を用いて、実験的に熱容量 $C(T_0)$ とコンダクタンス $K(T_0)$ を独立に求めることが出来る。その手順を考察し、述べよ。

- (1)「プレートテクトニクス」とはどのような概念か、3行程度で簡単に説明せよ。
- (2) プレートの動きはどのようなことからわかるか、各 1 行程度で証拠となるものを 2 つ挙 げよ。
- (3) 中央海嶺で生じたプレートは、冷却するにつれ、その厚さが \sqrt{t} (tは時間)に比例して増大することがわかっている。それを以下の簡単なモデルによって考えよう。
- (3-1) 海底で観測される熱流量 q_s (鉛直方向上向きに単位面積、単位時間当りに流れる熱量)は、プレート内の熱伝導によって表されるとして、その式を示せ。ただし、熱伝導率をK とし、プレートの厚さの上向き方向に z 軸をとり、プレート内の z における温度をT(z) とせよ。
- (3-2) プレートの底では、アセノスフェア(部分溶融した領域)内の物質が固化することによりプレートに付加して、プレートは厚くなる。その時に潜熱が生じる。これが、海底で観測される熱流量 $q_{\rm s}$ であるとして、プレートの厚さの時間変化を用いて $q_{\rm s}$ を表せ。ただし、アセノスフェア内の物質の単位質量当たりの潜熱を L、密度を ρ 、プレートの厚さを ℓ とせよ。
- (3-3) プレートの底での温度を $T_{\rm b}$ 、海底での温度を $T_{\rm s}$ とし、プレート内の温度勾配は一様として、上記の 2 式から ℓ が \sqrt{t} に比例することを示せ。
- $(3-4)~K=0.008~{
 m cal/(cm\cdot s\cdot deg)}$ 、 $T_{
 m b}=1000~{
 m ^{\circ}C}$ 、 $T_{
 m s}=0~{
 m ^{\circ}C}$ 、 $\rho=3.65~{
 m g/cm^{3}}$ 、 $L=240~{
 m cal/g}$ として、t の単位を百万年にとった時、プレートの厚さ ℓ (単位 km)と \sqrt{t} の比例係数はいくらになるか。 $\sqrt{10}\simeq3.2~{
 m cm}$ を用いて、有効数字 2 桁で答えよ。